SRNS: when and how to diagnose?

Francesco Emma

Division of Nephrology and Dialysis Bambino Gesù Children's Hospital & Research Institute Rome, Italy

Foot processes effacement

Causes of nephrotic syndrome

Adapted from Nachman, Jenette and Falk, Brenner & Rector, The kidney, 2008

Definition of steroid resistance in children

<u>Steroid resistance</u> = non response after 4 wks of PDN 60 mg/m² \pm IV MP

Idiopathic nephrotic syndrome in children

Pathology of FSGS

NOS

Perihilar

Cellular

Some rules...

Figure 2. The Effect of Calcineurin on Synaptopodin.

Synaptopodin, when phosphorylated, binds to the 14-3-3 protein and is protected from degradation. Synaptopodin stabilizes the actin cytoskeleton, allowing the podocyte to maintain its shape (Panel A). Calcineurin dephosphorylates synaptopodin, which then separates from 14-3-3 and can be degraded by cathepsin L. Its stabilizing effect on the actin cytoskeleton is lost, and the cell loses its shape (Panel B). Cyclosporin inhibits the action of calcineurin, preventing dephosphorylation of synaptopodin and allowing its actin-stabilizing effect to continue (Panel C). P denotes phosphorylation.

Mathieson, N Engl J Med, 2008

Faul et al. Nature Med, 2008

Ehrich et al, Nephrol Dial Transpl 2007

✓ Children with genetic forms of SRNS often present with less overt proteinuria

Genetics of SRNS

Gene	Chromosome	Protein name	FSGS	Collapsing GN	DMS	MCD	Kidney/ Syndromic	Inheritance
Slit diaphragm complex								
NPHS1	19q13.1	Nephrin	+		+		Kidney	AR
NPHS2	1q25.2	Podocin	+		+	+	Kidney	AR
CD2AP	6p12	CD2 associated protein	+				Kidney	AR
Actinomyosin complex								
ACTN4	19q13	Alpha-actinin 4	+				Kidney	AD
MYH9	22q13.1	Non-muscle myosin IIA heavy chain	+	+			Kidney	ND
Cell signaling								
TRPC6	11q21.22	Transient receptor potential cation channel C6	+				Kidney	AD
PLCE1	10q23	Phospholipase epsilon 1			+		Kidney	AR
Membrane repair and turnover and vesicle function								
DYSF	2p13.2–13.1	Dysferlin				+	Syndromic	AR
GLA	Xq22	Alphagalactosidase	+				Syndromic	X linked
SCARB2	4q21.1	Scavenger receptor class B, member 2		+			Syndromic	AR
Transcription factors								
WT1	11p13	Wilms tumor 1	+		+		Both	Sporadic
PAX2	10q24	Paired homeobox 2	+				Syndromic	AR
LMX1B	9q34	LIM homeobox domain transcription factor 1	+				Syndromic	AR
Extracellular matrix and receptors								
LAMB2	3p21	Laminin Beta 2			+		Syndromic	AR
ITGB4	17q25	Integrin beta 4	+				Syndromic	AR
COL4A3	2q36–37	Collagen 4A3					Both	AR
COL4A4	2q36–37	Collagen 4A4					Both	AR
COL4A5	Xq22.3	Collagen4A5					Both	X-linked
Mitochondrial function								
mtDNA tRNA le	^u mtDNA	Not applicable	+				Both	Maternal
COQ2	4q21.23	Co-enzyme Qenzyme 2	+	+			Both	AR
COQ6	14q24.3	Co-enzyme Q enzyme 6	+				Both	AR

Gene mutations in SRNS

Most SRNS that begin before 1 year have an identifiable genetic cause ...

Santin et al, Clin J Am Soc Nephrol, 2011

... especially if "congenital" (i.e. < 3 months)

Hinkes BG et al, Pediatrics 2007

Genetic Screening in Adolescents with SRNS

Lipska et al, Podonet consortium, KI 2013

Pediatr Nephrol (2011) 26:1897–1901 DOI 10.1007/s00467-011-1911-0

BRIEF REPORT

Nephrotic syndrome in infancy can spontaneously resolve

Jon Jin Kim • Joanna Clothier • Neil J. Sebire • David V. Milford • Nadeem Moghal • Richard S. Trompeter

4 patients with onset of NS at 0.5, 2.5, 4 and 7 months

SRNS in ubiquinone biosynthesis defects

Gene	Number of patients	Renal phenotype	Other features	Response to therapy
COQ1-PDSS1	2	No	Multisystem disorder	±
COQ1-PDSS2	1	SRNS	Progressive encephalomyopathy	+++
COQ2	6	SRNS	Progressive encephalomyopathy with liver failure	+++
COQ6	10	SRNS	Deafness seizures	+++
COQ7	-	?	(Mouse knock-out is lethal)	?
COQ8-ADCK3	>10	No	Cerebellar ataxia	±
COQ9	1	Tubulopathy	Lactic acidosis, encephalomyopathy	±

Emma et al, Pediatr Nephrol, 2011

Simultaneous Sequencing of 24 Genes Associated with Steroid-Resistant Nephrotic Syndrome

Hugh J. McCarthy, Agnieszka Bierzynska, Matt Wherlock, Milos Ognjanovic, Larissa Kerecuk, Shivaram Hegde, Sally Feather, Rodney D. Gilbert, Leah Krischock, Caroline Jones, Manish D. Sinha, Nicholas J.A. Webb, Martin Christian, Margaret M. Williams, Stephen Marks, Ania Koziell, Gavin I. Welsh, and Moin A. Saleem, on behalf of RADAR the UK SRNS Study Group

Clin J Am Soc Nephrol 8: 637–648, 2013.

- NGS in 36 patients with SRNS.
- Compound heterozygous mutation in COQ2 in 1 patient with isolated SRNS at 2 years of age, rapidly evolving into ESRD (c.683 A>G, c.701delT).

CoenzymeQ10 synthesis defects in <u>early</u> onset SRNS

Urinary organic acids in mitochondrial SRNS

CoenzymeQ10 treatment of SRNS

Diomedi-Camassei et al. JASN, 2007

Pierson syndrome (microcoria-congenital nephrosis) syndrome (LAMB2)

Age of onset of NS in LAMB2 mutations

34/49 microcoria
25/47 visual imapirment
19/47 cataract or lenticonus
13/47 retinal detachment
13/47 nystagmus
9/47 microphtalmia
7/47 severe myopia

Matejas et al, Hum Mut, 2010

Denys-Drash and Frasier syndromes

 $\rightarrow\!$ Always check the karyotype of young girls with SRNS

	Denys-Drash	Frasier
Onset of NS	< 2 years	2-6 years
Progression to ESRD	rapid	slow
Histology	DMS	FSGS>DMS
Gender	male pseudo-he	ermaphroditism
Other	Wilms tumor	primary amenorrhea gonadal dysgenesis risk of gonadoblastoma
WT1 mutation	nearly all patients: - germline mutations - mutations in exon 8 and 9	donor splice site in intron 9 resulting in the loss of the +KTS isoform

Frasier syndrome

2.2 y/o girl with SRNS – karyotype: 46XY

Screening for WT1 mutations in 114 children with FSGS and SRNS (neg for NPHS2)

3/32 girls classical WT1 splice mutation (Frasier syndrome)
 (2 patients 46 XY, 1 patient 46 XX)

1/32 girl D396N exon 9 (Denys-Drash syndrome)

Aucella Fet al. Pediatr Nephrol. 2006

PLCE1 (NPHS3) mutations in early-onset NS

- Phospholipase C ε1
- Hydrolysis of membrane phospholipids
- \rightarrow inositol triphosphate (IP3) \rightarrow diacylglycerol
- Localization in the podocyte Interaction between PLCε1 and IQGAP1 (which interacts with nephrin)
- Mutations found in: ~30% DMS ~8% early onset SRNS with FSGS (only in familial cases)
- High phenotypic variability (protective effect from other phopholipases?)

Diffuse Mesangial Sclerosis (DMS)

Courtesy C. Antignac

- AR mutations of the chromatin remodeling protein SMARCAL1
- Nephrotic syndrome with FSGS and progressive renal failure
- Recurrent lymphopenia , <u>defective cellular immunity</u>, chronic diarrhea, autoimmune thrombocytopenia, polyneuropathy, severe hypertension...
- <u>Severe infantile form</u>: dystrophia at birth, early renal insufficiency, neurologic complications (transient ischemic attacks, cerebral infarctions)
- Milder form: FSGS with short stature

Schimke-Immuno-Osseous Dysplasia (SIOD) [MIM 242900]

Small iliac wings and small ossification centres of the capital femoral epiphyses, laterally placed, with mild hip subluxation.

Platyspondyly with markedly short and rounded vertebral bodies.

- Spondyloepiphyseal dysplasia with disproportionate growth failure (ovoid and dorsally flat vertebrae, hypoplastic pelvis, dental abnormalities)
- Triangular face, short neck and trunk, lumbar lordosis, and protruding abdomen

Saraiva et al, J Med Genet

Schimke-Immuno-Osseous Dysplasia (SIOD) [MIM 242900]

Lücke el al, Pediatrics 2006

- A: in all congenital NS and SRNS
- A: positive family history
- A: extrarenal symptoms
 - (genitalia, ocular, neurological, skeletal malformation, deafness)
- A: think of possible mitochondrial disorder in children with onset
 - of SRNS < 2 years of age

Congenital NS	FSGS	DMS
NPHS1	NPHS2	WT1
NPHS2	WT1 in females	PLCE1
LAMB2	NPHS1	
PLCE1	PLCE1	

Next Generation Sequencing

- Rare, but exist (<2-3% of steroid responders; depends on your population)</p>
- Generally develops 2-10 years after disease onset
- Difficult cases of SDNS from onset
- FSGS > MCD-MesP
- No genetic mutation
- Frequent relapses after transplantation

Akchurin and Kakel 2003, personal observations

 Treatment regimens: mycophenolate mofetil cyclosporine tacrolimus alkylating agents rituximab plasma exchange

Q Remission in \geq 50% of cases